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Nonequilibrium roughening transition in an interface growth model with two species of particles
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We introduce an interface growth model exhibiting a roughening transition from a smooth to a rough phase,
related to a nonequilibrium phase transiti?éPT) from an active to an inactive phase at the bottom layer. In
the model, two different species of particles are deposited or evaporated, and a dynamic rule is assigned
symmetrically or asymmetrically with respect to particle species. It is found that for the asymmetric case, the
roughening transition and the NPT belong to the directed percolation universality class, while for the symmet-
ric case, they are related to the directed Ising universality c[84963-651X%99)01811-5

PACS numbe(s): 05.70.Ln, 82.20.Wt, 05.70.Fh

Recently the roughening transitigRT) from a smooth to  to classify the universality class for the RT. In this paper, we
a rough phase in nonequilibrium systems has attracted copropose that the number of the symmetric state lying in the
siderable interest in physical literatufg]. The RT in non- dynamic rule plays the role of classifying the universality
equilibrium systems occurs even in one dimension, whicltlass for the RT. In order to confirm this, we introduce a
might be interpreted as a spontaneous symmetry breakingtochastic interface model with twofold symmetry, and com-
phenomenon of a nonconserved order param@&]. The pare it with its asymmetric version. It is found that the RT
examples of the RT include the deposition-evaporatidh)  for the two cases behave differently from each other, and the
model with no evaporation on terrag2], the fungal growth symmetry in the dynamic rule indeed classifies the univer-
model[3], the polynuclear growth modé#], etc. The com- sality class of the RT. For the asymmetric case, the RT and
mon feature of the RT in the above models is that the RT ishe NPT belong to the DP universality class, while for the
related to directed percolatioiDP) [5]. The reason is that symmetric case, they are related to the DI universality class.
each of the interface models contains a reference height The stochastic model we introduce is defined as follows.
where the nonequilibrium phase transitioNPT) from an  In the model, two different species of particles are deposited
active to an inactive state occurs, which belongs to the DPRr evaporated on a one-dimensional substrate with periodic
universality class: When the site where the interface touchelsoundary condition. The two species are indicated by two
the reference height is called vacant site, the density of theolors (e.g., black and gragy The dynamics starts from a
vacant site exhibits the NPT from being finitactive state ~ vacuum state, where no particle is in the system. A site is
to decaying to zero exponential(inactive statg In the ac-  first selected at random, at which either deposition or evapo-
tive state, the interface is smooth, while in the inactive stateration of a particle is attempted with probabilipy(p/2 for
it is rough. Thus, the RT occurs at the same critical point ofblack andp/2 for gray and 1-p, respectively. The deposi-
the NPT, and is characterized by the universal property ofion and evaporation are realized under the two conditions
the NPT. For example, the reference height of the DE modetlescribed below. First, a restricted solid-on-solid condition is
is the bottom layer, on which the NPT belongs to the DPimposed such that the height difference between nearest
universality class. Thus, the RT in the DE model is related taneighboring columns does not exceed 1. Second, the interac-
DP. tion between nearest neighboring particles within the same

It has been shown that the NPT is classified according tdayer is considered, which is attractiveepulsive between
the number of equivalent inactive statgs. The inactive the samgdifferent) species. When a particle with a certain
state means the configuration with frozen dynamics. Theolor (e.g., black arrives for deposition on a hollow between
NPT with one inactive state belongs to the DP universalityparticles, the deposition is not allowed when both neighbor-
class, of which the examples include the monomer-dimeing particles on each side are of the common spegies),
model for the catalytic oxidation of C{¥], the contact pro- but different from that of the newly arriving particiblack).
cess [8], the surface depinning moddR], the branch- Meanwhile, a particle with a certain col¢e.qg., black is not
annihilation random walks with odd numbers of offspring allowed for evaporation when it is surrounded between the
[10], etc. When two inactive states exist, the NPT belongs tsame species of particléslack. However, a particle can be
the directed IsingDI) universality class, equivalent to the deposited or evaporated whenever two neighboring particles
class of parity-conserving branching-annihilation randomon each side are of different species from one another, or one
walks [10]. The examples include the probabilistic cellular (or both of the neighboring sites i¢are vacant. The dy-
automata moddl11], the kinetic Ising modefl12], the inter-  namic rule is depicted schematically in Fig. 1. Since the
acting monomer-dimer mod¢lL3], the modified Domany- dynamic rule is symmetric with respect to the particle spe-
Kinzel model[14], etc. cies, each configuration has its own dual state that the occu-

The interface model2—4], however, do not contain any pied sites are identical, but one color is replaced by the other
inactive state, and the dynamics proceeds without beingnd vice versa, as shown in Fig. 1. Wheis small, particles
trapped, even though their monolayer version contains inadorm small-sized islands which disappear after their short
tive state. Thus, it would be interesting to find the way howlifetime. Thus the interface is smooth. Asncreases, depo-
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FIG. 1. The dynamic rule for depositida) and for evaporation Lnt Lne

(b) for the symmetric case of the growth model. FIG. 2. (a) Double logarithmic plot(DLP) of py(p,t) versus

o ) ) o time t for probabilitiesp=0.4410(top), 0.4480& p.), and 0.4600
sition increases and islands grow, until, above a critical valugyottom). The data are obtained far=100, averaged over more

Pc. islands merge and fill new layers completely, giving thatihan 500 configurations. The dashed and the dotted lines have slope
the interface is unbounded from the bottom layer and beg.27 and 0.58, respectively, drawn for the ey®. DLP of S(t)
comes rough. Thus, the RT occurspat, consistent with the  versus time for the same cases &. (c) DLP ofpés)(pc t) versus
critical point of the NPT. This stochastic model might bet for different system sizet =50 (top), 100, 200, and 500. The
relevant to describe the surface growth by two-componendiotted line has slope 0.58, drawn for the eye. Inset: DLPrpf
particles such as the magnetic Eden model and the growtersusL atp.. (d) DLP ofpgf)(p,oc) versuse. The dashed line has
model with binary alloy{15]. slope 0.88, drawn for the eye. All plota)—(d) are for the symmet-

In an asymmetric version, one speci@sg., black can ric case of the growth model.
distinguish itself from the other, whereas the gray species
regards the black species as the same species. Then a gsyoscriptg means the growth modehy(p,t) saturates at
particle cannot evaporate at the site where both neighborinfinite value forp<p., and decreases to zero exponentially
particles are occupied by any species of particles, whereasfar p>p. in the long time limit as shown in Fig.(8). At
black particle can do whenever one of the neighbors is of ariticality p=p., pg(p.,t) scales algebraically as
different species from its own one. Then the symmetry in the
dynamic rule is broken, and the gray species flourish much pg(Pe.t)~t~ A, 1)
more than the black. When all particles are of a single spe-
cies, an extreme case of the asymmetric version, the model [0 the asymmetric casep.~0.3796 is estimated, and
reduced to the one by Aloet al.[2], where particles cannot B/v|~0.16(1) is measured, in good agreement with the DP
evaporate at any site in terrace, and can do only at the edgelue, 8/v(DP)~0.1595[16,17.
of the terrace. The model defined so far is called the growth For the symmetric case, it is found that~0.4480,
model hereafter to distinguish itself from the model below,which is much lower than the value of the monolayer model
called the monolayer model, confined in monolayer. below. The exponenis/v is obtained to be~0.581),

When the dynamics is restricted on monolayer, so thatvhich is much deviated from the DI valugg/v(DI)
particle is not allowed to deposit on top of another particle,~0.27~0.29[16]. These discrepancies may come from the
the model exhibits the NPT by varying the deposition prob-suppression-effect by the particle on upper layer. For ex-
ability p. In this case, a vacafbccupied site corresponds to ample, the particle A in Fig. 1 can evaporate in the mono-
an active(inactive site. Then there exist two inactive states, layer version because one of neighboring particles are of the
in each of which the entire system is filled with one singleother color, however, it cannot evaporate in the growth ver-
species of particles. As long as the symmetry is conservedion because of the existence of another particle on top of it.
the two inactive states are equivalent and the monolayer vefror comparison, for the asymmetric case, the particle A can-
sion belongs to the DI universality class. For comparisonjiot evaporate even in the monolayer model, because of the
our monolayer model is similar to the generalized contacexistence of the two particles on each side regardless of their
process proposed by Hinrichsghd], but the current model colors. Therefore, the suppression-effect appears strongly
is much simpler because the model has one control paranfweakly) for the symmetric(asymmetri¢ case. Since the
eter instead of two used in his model. Moreover, the model i®vaporation process is suppressed, an@p.,t) decays
easily generalizable to other cases including higher numbéaster than the DI behavior ast~ %8 Note that the mea-
of symmetric states or in higher dimensions. sured value=0.58 is twice as large as the DI value.

We performed Monte Carlo simulations for both the We consider the probabilit$(t) that the system contains
growth model(the symmetric and the asymmetric casasd  at least one vacant site on the bottom layer, and other sites
the monolayer model by varying the deposition probabjlity are occupied by any species of particles. Note B} is
and system sizek=10~1000. Let us first discuss the nu- different from the survival probability?(t) conventionally
merical result of the growth model. We first measure theused in the monolayer moddls6] in the sense that the prob-
vacant site densityy(p,t), averaged over all runs, where the ability S(t) [P(t)] counts the number of configurations that
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the bottom layer is filled with any speci€s single specigs 0.1 T 29 T .
of particles. As can be seen in Figh, there exists a char-
acteristic timery such that fort<ry, S(t)=1, and fort

>4, S(t) decays in the same way ag does. Thus the P
vacant site densityr)éf)(pc ,t), where the notatioris) means

the average over the sample with at least one vacant site .
decays as Eq1) up to 7y, and is finite beyond, as shown 0 €
in Fig. 2(c). The steady state valyet”(p.,) depends on 6 T 5 T
system sizel as p{’(p.,»)~L #*.. We obtainedg/v, - -1 f,p?ﬁ@
~0.951), which is almost twice as large as the DI value, «=f */ 1 =
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~0.5. However, the dynamic exponent v /v, , which is # . (/ﬁ/{f
defined via the characteristic time egva”H’ YL, is measured S (c) _g/ (d)
to be vy /v, ~1.642). This numerical value is close to the by ! TR B 5 5 L L -
DI value ~1.66~1.75[16]. On the other hand, foe=(p, Lor Lnt

_(S)>O’ thg steady state value may Dbe written as giG. 3. (g Plot of the velocityv versus—e. The dashed line
Py’ (P,*)~€”. As shown in Fig. &), the data do not fit =095 (— €)% was obtained by a least-square (i) DLP of W2
well to a straight line for smalk, but are likely to approach versus— e to measure the exponegt The dotted line, a guideline
a line asymptotically with slop@~0.88, the DI value, for to the eye, has slope 0.3&) DLP of the height-height correlation
large €, being far fromp,. function versus distance at p=0.9. The data are well fit to a
In the rough phase, the surface grows with finite velocity straight line with slope 2=1. (d) DLP of W? versust at probabili-
which depends on the deposition probability as-(p ties p=0.5 and 0.9top). The dotted and dashed lines have slopes
—pe)Y. The velocity might be related to the inverse of the 0-49 and 0.62top) to guide to the eye. All plotéa)—(d) are for the
characteristic timer, via v~a/7,, wherea is lattice con- symmetric case of the growth model with=500, and the data are
stant. If 74 is written asry~ (p—p,) "I for p>p,, followed ~ @veraged over 500 configurations.

by the scaling theory16], the velocity exponery would be Next, we discuss the numerical result for the monolayer
equal tov). This relation is confirmed for the asymmetric model. The simulations were performed with two different
case; the measured valye-1.67(8) is close to the DP value jpjtia| configurations. For one case, every site is occupied by
v|(DP)~1.73. However, for the symmetric case, the mea- sjngle species of particle except one vacant site=a.
sured valuey~1.25(3) is much deviated from/(DI)  Then the dynamics begins at the vacant site or its vicinity.
~3.17~-3.25[13], suggesting that the scaling behavior doesthjs initial configuration is used in the defect dynaniité].
not hold in the rough phase. This discrepancy may resulihe active site density increases with increasing time. We
from the suppression effect, which appears much strongly ipneasure the survival probability(t) (the probability that
the rough phase. . o the system is still active at timg, the density of the active
Next, we consider the surface fluctuation width in theg;jie pm(t) averaged over all runs, where the subscript
rough phase, W2(L,t)=(1L)Z;hf(t) ~[(LL)Z;hi(t) ], means the monolayer model, and the mean-square distance
whereh;(t) denotes the height at siteat timet. The inter-  of spreading of the active regid®?(t) averaged over surviv-
face width behaves as ing runs. At criticality, p,~0.7485, these quantities scale
1207 fort<|Z, algebraically as a function of time &) ~t"?, pp(t)~t7,
and R?(t) ~t%?, where the bar means the exponents of the
monolayer model. It is measured th&#+0.281), »~0.00,
and their sumé+ = B/v is consistent with the DI value.
where( is the roughness exponent agds the exponentto  The measured dynamic expone?a% 1.75(1) is also consis-
describe the roughness as a function of the deposition proant with the DI value. For the second case, every site is
ability p. The exponenty is measured to bg~0.34(1)  yacant at=0, which is the same initial condition as used in
[~0.89(4)] for the symmetridasymmetri¢ case as Shown the growth model. In this case, the active site density de-
in Fig. 3(b). The asymmetric value is close jo~0.92 ob- creases with increasing time a!#n(t)’vt*;’, where the

tained from the single-species modigl. The roughness ex- . -
ponent ¢~0.50(1) is close to the one in the Edwards- prime means the exponents are from the second initial con-

Wilkinson (EW) universality class[18] and the Kardar- dition. The exponent;’~0.27(1)_is obtained. The survival
Parisi-ZhangKPZ) universality clas§19] in one dimension, ~probability behaves a®’(t)~t~°, and the exponens’
which is also confirmed via the height-height correlation~0.00 is obtained. Even though the two different initial con-
function,C?(r)=([h(r)—h(0)]?), which behaves as a func- figurations produce the different values of the exponents,
tion of the distance asC?(r)~r2¢ [Fig. 3(c)]. The numeri-  their sums are close to each othéf; 7~ &' + 7', which is

cal value of the growth exponetitz varies between 1/4 and equal toB/v.

1/3, depending on the deposition probabiljly Since the In summary, we have introduced an interface model with
growth velocity forp>p. is nonzero, the interface growth a twofold symmetry, exhibiting the RT and the NPT at the
belongs to the KPZ universality class. pt, the roughness bottom layer, to show that the symmetry in the dynamics
of surface exhibits the marginal behavish?~logt for t plays the role of classifying the universality class for the RT.
<LZ andW?~logL for t>L2 Performing numerical simulations, it was shown that when
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the twofold symmetry is broken, the RT and the NPT belongor of the interface growth velocity in the rough phase cannot
to the DP universality class. When the symmetry is con-be described in terms of the DI exponents.

served, the dynamics at the bottom layer is affected by the Note addedRecently we learned of a similar work by
particle on upper laye(the suppression effegtleading to  Hinrichsen and @or [20], motivated by the current work, on
that the critical point is considerably lowered and the vacanthe roughening transition related to the DI universality class.

site density decays faster than the DI behavior with the exHowever, their stochastic model is different from ours.
ponent almost twice as large as the DI value. Nevertheless,

the dynamic exponent of the model is close to the DI value, B.K. wishes to thank H. Park and H. Hinrichsen for help-
leading to the conclusion that the NPT is related to the Diful discussions. This work was supported by the Korean Re-
universality class for the symmetric case. Finally, the behavsearch FoundatioriGrant Nos. 97-2409 & 98-001-D002B0
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