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Nonequilibrium roughening transition in an interface growth model with two species of particles
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Department of Physics and Center for Advanced Materials and Devices, Konkuk University, Seoul 143-701, Korea

~Received 21 January 1999!

We introduce an interface growth model exhibiting a roughening transition from a smooth to a rough phase,
related to a nonequilibrium phase transition~NPT! from an active to an inactive phase at the bottom layer. In
the model, two different species of particles are deposited or evaporated, and a dynamic rule is assigned
symmetrically or asymmetrically with respect to particle species. It is found that for the asymmetric case, the
roughening transition and the NPT belong to the directed percolation universality class, while for the symmet-
ric case, they are related to the directed Ising universality class.@S1063-651X~99!01811-5#

PACS number~s!: 05.70.Ln, 82.20.Wt, 05.70.Fh
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Recently the roughening transition~RT! from a smooth to
a rough phase in nonequilibrium systems has attracted
siderable interest in physical literature@1#. The RT in non-
equilibrium systems occurs even in one dimension, wh
might be interpreted as a spontaneous symmetry brea
phenomenon of a nonconserved order parameter@2,3#. The
examples of the RT include the deposition-evaporation~DE!
model with no evaporation on terrace@2#, the fungal growth
model @3#, the polynuclear growth model@4#, etc. The com-
mon feature of the RT in the above models is that the RT
related to directed percolation~DP! @5#. The reason is tha
each of the interface models contains a reference he
where the nonequilibrium phase transition~NPT! from an
active to an inactive state occurs, which belongs to the
universality class: When the site where the interface touc
the reference height is called vacant site, the density of
vacant site exhibits the NPT from being finite~active state!
to decaying to zero exponentially~inactive state!. In the ac-
tive state, the interface is smooth, while in the inactive sta
it is rough. Thus, the RT occurs at the same critical point
the NPT, and is characterized by the universal property
the NPT. For example, the reference height of the DE mo
is the bottom layer, on which the NPT belongs to the D
universality class. Thus, the RT in the DE model is related
DP.

It has been shown that the NPT is classified according
the number of equivalent inactive states@6#. The inactive
state means the configuration with frozen dynamics. T
NPT with one inactive state belongs to the DP universa
class, of which the examples include the monomer-dim
model for the catalytic oxidation of CO@7#, the contact pro-
cess @8#, the surface depinning model@9#, the branch-
annihilation random walks with odd numbers of offsprin
@10#, etc. When two inactive states exist, the NPT belongs
the directed Ising~DI! universality class, equivalent to th
class of parity-conserving branching-annihilation rand
walks @10#. The examples include the probabilistic cellul
automata model@11#, the kinetic Ising model@12#, the inter-
acting monomer-dimer model@13#, the modified Domany-
Kinzel model@14#, etc.

The interface models@2–4#, however, do not contain an
inactive state, and the dynamics proceeds without be
trapped, even though their monolayer version contains in
tive state. Thus, it would be interesting to find the way h
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to classify the universality class for the RT. In this paper,
propose that the number of the symmetric state lying in
dynamic rule plays the role of classifying the universal
class for the RT. In order to confirm this, we introduce
stochastic interface model with twofold symmetry, and co
pare it with its asymmetric version. It is found that the R
for the two cases behave differently from each other, and
symmetry in the dynamic rule indeed classifies the univ
sality class of the RT. For the asymmetric case, the RT
the NPT belong to the DP universality class, while for t
symmetric case, they are related to the DI universality cla

The stochastic model we introduce is defined as follow
In the model, two different species of particles are depos
or evaporated on a one-dimensional substrate with perio
boundary condition. The two species are indicated by t
colors ~e.g., black and gray!. The dynamics starts from a
vacuum state, where no particle is in the system. A site
first selected at random, at which either deposition or eva
ration of a particle is attempted with probabilityp (p/2 for
black andp/2 for gray! and 12p, respectively. The deposi
tion and evaporation are realized under the two conditi
described below. First, a restricted solid-on-solid condition
imposed such that the height difference between nea
neighboring columns does not exceed 1. Second, the inte
tion between nearest neighboring particles within the sa
layer is considered, which is attractive~repulsive! between
the same~different! species. When a particle with a certa
color ~e.g., black! arrives for deposition on a hollow betwee
particles, the deposition is not allowed when both neighb
ing particles on each side are of the common species~gray!,
but different from that of the newly arriving particle~black!.
Meanwhile, a particle with a certain color~e.g., black! is not
allowed for evaporation when it is surrounded between
same species of particles~black!. However, a particle can be
deposited or evaporated whenever two neighboring parti
on each side are of different species from one another, or
~or both! of the neighboring sites is~are! vacant. The dy-
namic rule is depicted schematically in Fig. 1. Since t
dynamic rule is symmetric with respect to the particle sp
cies, each configuration has its own dual state that the o
pied sites are identical, but one color is replaced by the o
and vice versa, as shown in Fig. 1. Whenp is small, particles
form small-sized islands which disappear after their sh
lifetime. Thus the interface is smooth. Asp increases, depo
6160 © 1999 The American Physical Society
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PRE 60 6161BRIEF REPORTS
sition increases and islands grow, until, above a critical va
pc , islands merge and fill new layers completely, giving th
the interface is unbounded from the bottom layer and
comes rough. Thus, the RT occurs atpc , consistent with the
critical point of the NPT. This stochastic model might b
relevant to describe the surface growth by two-compon
particles such as the magnetic Eden model and the gro
model with binary alloy@15#.

In an asymmetric version, one species~e.g., black! can
distinguish itself from the other, whereas the gray spec
regards the black species as the same species. Then a
particle cannot evaporate at the site where both neighbo
particles are occupied by any species of particles, where
black particle can do whenever one of the neighbors is o
different species from its own one. Then the symmetry in
dynamic rule is broken, and the gray species flourish m
more than the black. When all particles are of a single s
cies, an extreme case of the asymmetric version, the mod
reduced to the one by Alonet al. @2#, where particles canno
evaporate at any site in terrace, and can do only at the e
of the terrace. The model defined so far is called the gro
model hereafter to distinguish itself from the model belo
called the monolayer model, confined in monolayer.

When the dynamics is restricted on monolayer, so t
particle is not allowed to deposit on top of another partic
the model exhibits the NPT by varying the deposition pro
ability p. In this case, a vacant~occupied! site corresponds to
an active~inactive! site. Then there exist two inactive state
in each of which the entire system is filled with one sing
species of particles. As long as the symmetry is conser
the two inactive states are equivalent and the monolayer
sion belongs to the DI universality class. For comparis
our monolayer model is similar to the generalized cont
process proposed by Hinrichsen@14#, but the current mode
is much simpler because the model has one control par
eter instead of two used in his model. Moreover, the mode
easily generalizable to other cases including higher num
of symmetric states or in higher dimensions.

We performed Monte Carlo simulations for both th
growth model~the symmetric and the asymmetric cases! and
the monolayer model by varying the deposition probabilityp
and system sizesL510;1000. Let us first discuss the nu
merical result of the growth model. We first measure
vacant site densityrg(p,t), averaged over all runs, where th

FIG. 1. The dynamic rule for deposition~a! and for evaporation
~b! for the symmetric case of the growth model.
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subscriptg means the growth model.rg(p,t) saturates at
finite value forp,pc , and decreases to zero exponentia
for p.pc in the long time limit as shown in Fig. 2~a!. At
criticality p5pc , rg(pc ,t) scales algebraically as

rg~pc ,t !;t2b/n i. ~1!

For the asymmetric case,pc'0.3796 is estimated, an
b/n i'0.16(1) is measured, in good agreement with the
value,b/n i(DP)'0.1595@16,17#.

For the symmetric case, it is found thatpc'0.4480,
which is much lower than the value of the monolayer mo
below. The exponentb/n i is obtained to be'0.58(1),
which is much deviated from the DI value,b/n i(DI )
'0.27;0.29 @16#. These discrepancies may come from t
suppression-effect by the particle on upper layer. For
ample, the particle A in Fig. 1 can evaporate in the mon
layer version because one of neighboring particles are of
other color, however, it cannot evaporate in the growth v
sion because of the existence of another particle on top o
For comparison, for the asymmetric case, the particle A c
not evaporate even in the monolayer model, because of
existence of the two particles on each side regardless of t
colors. Therefore, the suppression-effect appears stro
~weakly! for the symmetric~asymmetric! case. Since the
evaporation process is suppressed, andrg(pc ,t) decays
faster than the DI behavior as;t20.58. Note that the mea-
sured value'0.58 is twice as large as the DI value.

We consider the probabilityS(t) that the system contain
at least one vacant site on the bottom layer, and other s
are occupied by any species of particles. Note thatS(t) is
different from the survival probabilityP(t) conventionally
used in the monolayer models@16# in the sense that the prob
ability S(t) @P(t)# counts the number of configurations th

FIG. 2. ~a! Double logarithmic plot~DLP! of rg(p,t) versus
time t for probabilitiesp50.4410~top!, 0.4480(5pc), and 0.4600
~bottom!. The data are obtained forL5100, averaged over more
than 500 configurations. The dashed and the dotted lines have s
0.27 and 0.58, respectively, drawn for the eye.~b! DLP of S(t)
versus timet for the same cases as~a!. ~c! DLP of rg

(s)(pc ,t) versus
t for different system sizesL550 ~top!, 100, 200, and 500. The
dotted line has slope 0.58, drawn for the eye. Inset: DLP oftg

versusL at pc . ~d! DLP of rg
(s)(p,`) versuse. The dashed line has

slope 0.88, drawn for the eye. All plots~a!–~d! are for the symmet-
ric case of the growth model.
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6162 PRE 60BRIEF REPORTS
the bottom layer is filled with any species~a single species!
of particles. As can be seen in Fig. 2~b!, there exists a char
acteristic timetg such that fort,tg , S(t)51, and for t
.tg , S(t) decays in the same way asrg does. Thus the
vacant site densityrg

(s)(pc ,t), where the notation~s! means
the average over the sample with at least one vacant
decays as Eq.~1! up totg , and is finite beyondtg as shown
in Fig. 2~c!. The steady state valuerg

(s)(pc ,`) depends on
system sizeL as rg

(s)(pc ,`);L2b/n'. We obtainedb/n'

'0.95(1), which is almost twice as large as the DI valu
'0.5. However, the dynamic exponentz5n i /n' , which is
defined via the characteristic time astg;Ln i /n', is measured
to be n i /n''1.64(2). This numerical value is close to th
DI value '1.66;1.75 @16#. On the other hand, fore[(pc
2p).0, the steady state value may be written
rg

(s)(p,`);eb. As shown in Fig. 2~d!, the data do not fit
well to a straight line for smalle, but are likely to approach
a line asymptotically with slopeb'0.88, the DI value, for
largee, being far frompc .

In the rough phase, the surface grows with finite veloc
which depends on the deposition probability asv;(p
2pc)

y. The velocity might be related to the inverse of t
characteristic timetg via v;a/tg , wherea is lattice con-
stant. Iftg is written astg;(p2pc)

2n i for p.pc , followed
by the scaling theory@16#, the velocity exponenty would be
equal ton i . This relation is confirmed for the asymmetr
case; the measured valuey'1.67(8) is close to the DP valu
n i(DP)'1.73. However, for the symmetric case, the me
sured valuey'1.25(3) is much deviated fromn i(DI)
'3.17;3.25 @13#, suggesting that the scaling behavior do
not hold in the rough phase. This discrepancy may re
from the suppression effect, which appears much strongl
the rough phase.

Next, we consider the surface fluctuation width in t
rough phase, W2(L,t)5(1/L)( ihi

2(t)2@(1/L)( ihi(t)#2,
wherehi(t) denotes the height at sitei at time t. The inter-
face width behaves as

W2~L,t !;H t2z/z for t!Lz,

~2e!xL2z for t@Lz, ~2!

wherez is the roughness exponent andx is the exponent to
describe the roughness as a function of the deposition p
ability p. The exponentx is measured to bex'0.34(1)
@'0.89(4)# for the symmetric~asymmetric! case as shown
in Fig. 3~b!. The asymmetric value is close tox'0.92 ob-
tained from the single-species model@2#. The roughness ex
ponent z'0.50(1) is close to the one in the Edward
Wilkinson ~EW! universality class@18# and the Kardar-
Parisi-Zhang~KPZ! universality class@19# in one dimension,
which is also confirmed via the height-height correlati
function,C2(r )5^@h(r )2h(0)#2&, which behaves as a func
tion of the distancer asC2(r );r 2z @Fig. 3~c!#. The numeri-
cal value of the growth exponentz/z varies between 1/4 an
1/3, depending on the deposition probabilityp. Since the
growth velocity forp.pc is nonzero, the interface growt
belongs to the KPZ universality class. Atpc , the roughness
of surface exhibits the marginal behavior,W2; log t for t
!Lz andW2; logL for t@Lz.
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Next, we discuss the numerical result for the monola
model. The simulations were performed with two differe
initial configurations. For one case, every site is occupied
a single species of particle except one vacant site att50.
Then the dynamics begins at the vacant site or its vicin
This initial configuration is used in the defect dynamics@16#.
The active site density increases with increasing time.
measure the survival probabilityP(t) ~the probability that
the system is still active at timet), the density of the active
site rm(t) averaged over all runs, where the subscriptm
means the monolayer model, and the mean-square dist
of spreading of the active regionR2(t) averaged over surviv-
ing runs. At criticality, p̄c'0.7485, these quantities sca
algebraically as a function of time asP(t);t2 d̄, rm(t);t h̄,
and R2(t);t2/z̄, where the bar means the exponents of
monolayer model. It is measured thatd̄'0.28(1), h̄'0.00,
and their sumd̄1h̄5b/n i is consistent with the DI value
The measured dynamic exponentz̄'1.75(1) is also consis-
tent with the DI value. For the second case, every site
vacant att50, which is the same initial condition as used
the growth model. In this case, the active site density
creases with increasing time asrm8 (t);t2h̄8, where the
prime means the exponents are from the second initial c
dition. The exponenth̄8'0.27(1) is obtained. The surviva
probability behaves asP8(t);t2 d̄8, and the exponentd̄8
'0.00 is obtained. Even though the two different initial co
figurations produce the different values of the exponen
their sums are close to each other,d̄1h̄'d̄81h̄8, which is
equal tob/n i .

In summary, we have introduced an interface model w
a twofold symmetry, exhibiting the RT and the NPT at t
bottom layer, to show that the symmetry in the dynam
plays the role of classifying the universality class for the R
Performing numerical simulations, it was shown that wh

FIG. 3. ~a! Plot of the velocityv versus2e. The dashed line
v50.95* (2e)1.25was obtained by a least-square fit.~b! DLP of W2

versus2e to measure the exponentx. The dotted line, a guideline
to the eye, has slope 0.34.~c! DLP of the height-height correlation
function versus distancer at p50.9. The data are well fit to a
straight line with slope 2z51. ~d! DLP of W2 versust at probabili-
ties p50.5 and 0.9~top!. The dotted and dashed lines have slop
0.49 and 0.62~top! to guide to the eye. All plots~a!–~d! are for the
symmetric case of the growth model withL5500, and the data are
averaged over 500 configurations.
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the twofold symmetry is broken, the RT and the NPT belo
to the DP universality class. When the symmetry is co
served, the dynamics at the bottom layer is affected by
particle on upper layer~the suppression effect!, leading to
that the critical point is considerably lowered and the vac
site density decays faster than the DI behavior with the
ponent almost twice as large as the DI value. Neverthel
the dynamic exponent of the model is close to the DI val
leading to the conclusion that the NPT is related to the
universality class for the symmetric case. Finally, the beh
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ior of the interface growth velocity in the rough phase can
be described in terms of the DI exponents.

Note added.Recently we learned of a similar work b
Hinrichsen and O´ dor @20#, motivated by the current work, on
the roughening transition related to the DI universality cla
However, their stochastic model is different from ours.

B.K. wishes to thank H. Park and H. Hinrichsen for hel
ful discussions. This work was supported by the Korean R
search Foundation,~Grant Nos. 97-2409 & 98-001-D00280!.
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